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Introduction » Definition

e Optimization via Simulation (OvS), or, simply called
Simulation Optimization (SO):
i =E
min g(z) = E[G(=, )],
where X C R% is the feasible set, and g : X - R is a

deterministic function whose values can only be evaluated
with noisy observations.
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Introduction » Definition

e Optimization via Simulation (OvS), or, simply called
Simulation Optimization (SO):

i x) = E[G(x, £)],
min g(z) = E[G(z, £)]
where X C R% is the feasible set, and g : X - R is a
deterministic function whose values can only be evaluated
with noisy observations.

e Given z, G(z, §) is a random variable (the randomness is
from &), and the distribution of G(x, £) is unknown.
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Introduction » Definition

e Optimization via Simulation (OvS), or, simply called
Simulation Optimization (SO):
i =E
min g(z) = E[G(=, )],
where X C R? is the feasible set, and g: X — R is a

deterministic function whose values can only be evaluated
with noisy observations.

e Given z, G(z, §) is a random variable (the randomness is
from &), and the distribution of G(x, £) is unknown.

e Given z, realizations of G(x, £) can be observed by running
simulation, or more generally, taking samples.
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Introduction » Types

e OvS Problem can be classified into two types according to
whether the explicit form of G(z, §) is available.
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Introduction » Types

e OvS Problem can be classified into two types according to
whether the explicit form of G(z, §) is available.

e White-box: The explicit form of G(x, &) is available.
 Example: G(z, &) =sin((z — £)?), where the distribution of £
is unknown.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 10 Spring 2022 (full-time)


https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction » Types

e OvS Problem can be classified into two types according to
whether the explicit form of G(z, §) is available.

e White-box: The explicit form of G(x, &) is available.

 Example: G(z, &) =sin((z — £)?), where the distribution of £
is unknown.

o Black-box: The explicit form of G(z, £) is not available and
it is embedded in a simulation model.
e Example: Let G(x, &) be the waiting time of a customer in a
complex queueing network, where x represents the
configuration parameters.
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Introduction » Types

e OvS Problem can be classified into three types according to
the feasible set X.
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Introduction » Types

e OvS Problem can be classified into three types according to
the feasible set X.

¢ Ranking and selection (R&S): X is a set of relatively small
number of (discrete) solutions.
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Introduction » Types

e OvS Problem can be classified into three types according to
the feasible set X.

¢ Ranking and selection (R&S): X is a set of relatively small
number of (discrete) solutions.

e Discrete OvS (DOvVS): X is a discrete set, with huge or
even countably infinite number of solutions.

e One can also view R&S problem as a special type of DOvVS
problem.
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Introduction » Types

e OvS Problem can be classified into three types according to
the feasible set X.

¢ Ranking and selection (R&S): X is a set of relatively small
number of (discrete) solutions.

e Discrete OvS (DOvVS): X is a discrete set, with huge or
even countably infinite number of solutions.

e One can also view R&S problem as a special type of DOvVS
problem.

e Continuous OvS (COvS): X is a continuous set, hence
there exits uncountably infinite number of solutions.
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® White-box OvS Problem

» Sample Average Approximation
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White-box OvS Problem

e For white-box OvS problems, we can use the sample average
approximation.
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White-box OvS Problem

e For white-box OvS problems, we can use the sample average
approximation.

e Of course, those algorithms designed for black-box OvS
problems can also be applied to white-box OvS problems.
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White-box OvS Problem » Sample Average Approximation

e Suppose that we have an iid sample {&1,...,&,} of &.

o To solve mingey g(x) = E[G(x, £)], we try to solve

Z (@, &),

with any suitable deterministic optimization algorithm (after

{&1, ..., &} is realized).

min gn
xreX

3|*—‘
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White-box OvS Problem » Sample Average Approximation

e Suppose that we have an iid sample {&1,...,&,} of &.

o To solve mingey g(x) = E[G(x, £)], we try to solve

Z (@, &),

with any suitable deterministic optimization algorithm (after

{&, ..., &} is realized).

e This method is called Sample Average Approximation (SAA);
see Kim et al. (2015)| for a review.

min gn
xreX

§|P—‘
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White-box OvS Problem » Sample Average Approximation

e Suppose that we have an iid sample {&1,...,&,} of &.

o To solve mingey g(x) = E[G(x, £)], we try to solve

Z (@, &),

with any suitable deterministic optimization algorithm (after

{&, ..., &} is realized).

e This method is called Sample Average Approximation (SAA);
see Kim et al. (2015)| for a review.

min gn
xreX

§|P—‘

e Clearly, for finite n, infzcx gn(x) is a random variable (before
{&, ..., &} is realized), and it is not strictly equal to
mingey g(x).
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White-box OvS Problem » Sample Average Approximation

¢ Indeed, one can prove that

o o |
E nggfgn(w)} < min g(z)
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White-box OvS Problem » Sample Average Approximation

¢ Indeed, one can prove that

o o
E nggfgn(w)} < min g().

Proof.
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White-box OvS Problem » Sample Average Approximation

¢ Indeed, one can prove that

o o
E nggfgn(w)} < min g().

Proof. Forany y € X,

i 5:(2) < 5u(y) = B | 00, 5.(@)| < B )] = (0)
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White-box OvS Problem » Sample Average Approximation

¢ Indeed, one can prove that

o o
E [;g{gn(m)} < min g().

Proof. Forany y € X,

i Gu(@) < Gu(y) = E | nf, 6 (2)| < @) = o)

Minimizing the right-hand side over all y € X completes the proof. W

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 10 Spring 2022 (full-time)


https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

White-box OvS Problem » Sample Average Approximation

¢ Indeed, one can prove that

o o
E [;g{gn(m)} < min g().

Proof. Forany y € X,

i Gu(@) < Gu(y) = E | nf, 6 (2)| < @) = o)

Minimizing the right-hand side over all y € X completes the proof. W

e Moreover, it can also be shown that

E | inf Go(x)| <E | inf G, < mi .
L;Ielxg (-’B)] < ngxg +1(w)] < min g(x)

(Prove it as an exercise)
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White-box OvS Problem » Sample Average Approximation

e What can we say if we continuously increase sample size n?
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White-box OvS Problem » Sample Average Approximation

e What can we say if we continuously increase sample size n?

e |t will be reassuring if we know that the obtained solution
will be closer and closer to the true solution, as we increase
sample size n.
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White-box OvS Problem » Sample Average Approximation

e What can we say if we continuously increase sample size n?

e |t will be reassuring if we know that the obtained solution
will be closer and closer to the true solution, as we increase
sample size n.

e Formally, we are seeking for a convergence guarantee for
SAA method.
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White-box OvS Problem » Sample Average Approximation

o For set A C R?, the distance from & € R? to A is defined as

dist = inf —
ist(@, 4) = inf [l& ~ y]|

where || - || denotes the Euclidean distance.
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White-box OvS Problem » Sample Average Approximation

e For set A C R%, the distance from & € R% to A is defined as
dist = inf —
ist(, A) = it [l2 ],
where || - || denotes the Euclidean distance.
e For sets A, B ¢ R%, the deviation from A to B is defined as

D(A, B) == sup dist(z, B).
xzcA
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White-box OvS Problem » Sample Average Approximation

o For set A C R?, the distance from & € R? to A is defined as

dist = inf —
ist(@, 4) = inf [l& ~ y]|

where || - || denotes the Euclidean distance.

e For sets A, B ¢ R%, the deviation from A to B is defined as

D(A, B) == sup dist(z, B).
xzcA

o Let

S = argmin g(x),
zeX

S,, = argmin In(x).
reX
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White-box OvS Problem » Sample Average Approximation

Convergence of SAA (Theorem 5.3 of

Suppose that
@ X is a compact set;
® g(x) is finite valued and continuous on X;
© P{g.(z) — g(x) uniformly in x € X} = 1;
(4] ]P’{gn is nonempty for n large enough} = 1;

Then, as n — oo,

ircrélggn(a:) - ;ne1§9<w) and D(S,,S) — 0.
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White-box OvS Problem » Sample Average Approximation

Convergence of SAA (Theorem 5.3 of )

Suppose that
@ X is a compact set;
® g(x) is finite valued and continuous on X;
© P{g.(z) — g(x) uniformly in x € X} = 1;
(4] ]P’{gn is nonempty for n large enough} = 1;

Then, as n — oo,

ircrélggn(a:) - ;ne1§9<w) and D(S,,S) — 0.

Besides, if S = {x*} is a singleton, then for any Z,, € §n

~  a.s, *
T, — x*, asn — oo.
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White-box OvS Problem » Sample Average Approximation

e How fast does the SAA solution converge to the true
solution?

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 10 Spring 2022 (full-time)


https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

White-box OvS Problem » Sample Average Approximation

e How fast does the SAA solution converge to the true
solution?

e Formally, it's known as the rate of convergence.
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White-box OvS Problem » Sample Average Approximation

e How fast does the SAA solution converge to the true
solution?

e Formally, it's known as the rate of convergence.

e Under certain regularity conditions, one may show that

7R _ ~1/2
min gn () — min g(x)| = Op(n~""),

and given S = {x*} is a singleton,

|Zn —a*|| = Op(n~"/2).
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©® Black-box COvS Problem
» Gradient Descent
» Stochastic Approximation
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Black-box COvS Problem

e Main types of algorithms for black-box COvS problems:
¢ random search; see Andradéttir (2015)| for a review;
e stochastic approximation; see Chau and Fu (2015)| for a review;
¢ surrogate-based methods; see |Hong and Zhang (2021)| for a
review.
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Black-box COvS Problem

e Main types of algorithms for black-box COvS problems:

¢ random search; see Andradéttir (2015)| for a review;

e stochastic approximation; see Chau and Fu (2015)| for a review;

¢ surrogate-based methods; see |Hong and Zhang (2021)| for a
review.

e Stochastic Approximation (SA) was proposed by [Robbins and
Monro (1951)| and Kiefer and Wolfowitz (1952)!.

e SA can be viewed as a stochastic version of the gradient
descent (or called steepest descent) algorithm, so it is also
called stochastic gradient descent.
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Black-box COvS Problem » Gradient Descent

e Gradient descent is a first-order iterative optimization
algorithm for finding a local minimum of a differentiable
(deterministic) function:

i1 = xr — YVg(zr),

where Vg(z) is the gradient and v > 0 is the step size.
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Black-box COvS Problem » Gradient Descent

e Gradient descent is a first-order iterative optimization
algorithm for finding a local minimum of a differentiable
(deterministic) function:

Tp1 = — YVg(@k),
where Vg(z) is the gradient and v > 0 is the step size.

e If the minimization problem is constrained, say the feasible set
X c R% is convex and compact, one can easily add a
projection Ily(x) mapping « ¢ X back into X.
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Black-box COvS Problem » Gradient Descent
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Black-box COvS Problem » Gradient Descent

e The value of the step size + is allowed to change at every
iteration, and with proper choice, convergence to a local
minimizer (say, *) can be guaranteed, i.e., x; — x*.
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Black-box COvS Problem

» Gradient Descent

e The value of the step size + is allowed to change at every
iteration, and with proper choice, convergence to a local
minimizer (say, *) can be guaranteed, i.e., x; — x*.

e Under certain regularity conditions, one can show that

lg(xr) — g(x*)| = O(k™1) for unconstraied problem with
constant .
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Black-box COvS Problem » Stochastic Approximation

e SA as a stochastic version of the gradient ascent:
Xp1 =1y <Xk - ak§g(Xk)> .

where Iy is the projection, {aj}r>1 is a deterministic
positive sequence for step size, and Vg(x) is an estimmator of
the gradient Vg(x).
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Black-box COvS Problem » Stochastic Approximation

e SA as a stochastic version of the gradient ascent:
Xp1 =1y <Xk - akﬁg(xk)) .

where Iy is the projection, {aj}r>1 is a deterministic

positive sequence for step size, and @g(:c) is an estimmator of
the gradient Vg(x).

e In some simulation experiments, unbiased Vg(x) is available,’

then it is the Robbins-Monro (RM) type SA (Robbins and
Monro 1951).

TWhen we observe G(z, ), we will also observe eg(w, £) at the same time such that ]E[@g(a:,f)] = Vy(x).
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Black-box COvS Problem » Stochastic Approximation

e SA as a stochastic version of the gradient ascent:
Xp1 =1y <Xk - akﬁg(xk)) .

where Iy is the projection, {aj}r>1 is a deterministic
positive sequence for step size, and Vg(x) is an estimmator of
the gradient Vg(x).

e In some simulation experiments, unbiased Vg(x) is available,’

then it is the Robbins-Monro (RM) type SA (Robbins and
Monro 1951).

e Otherwise, @g(m) needs to be constructed with certain
indirect method (thus biased), then it is the Kiefer-Wolfowitz
(KW) type SA |Kiefer and Wolfowitz (1952)!.

TWhen we observe G(z, ), we will also observe eg(w, £) at the same time such that ]E[ﬁg(w,f)] = Vy(x).
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Black-box COvS Problem » Stochastic Approximation

o Gradient descent vs SA (i.e., stochastic gradient desecent):

Gradient Descent Stochastic Gradient Descent
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Black-box COvS Problem » Stochastic Approximation

o Construct Vg(X},) via symmetric (or central) finite difference:

~

Vo (Xi) = (91 (Xi) .- 9a(Xp)",
where

G(Xy + cre;) — G( Xy, — cpe;)
2cp

gi (X) = :
e; denotes a d x 1 vector whose ith element is one and other
elements are all zeros, i =1,...,d, and {c;}r>1 is a
deterministic positive sequence.
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Black-box COvS Problem » Stochastic Approximation

o Construct Vg(X},) via symmetric (or central) finite difference:

~

Vo (Xi) = (91 (Xi) .- 9a(Xp)",
where

G(Xy + cre;) — G( Xy, — cpe;)

9i (X) = 5o

e; denotes a d x 1 vector whose ith element is one and other
elements are all zeros, i =1,...,d, and {c;}r>1 is a
deterministic positive sequence.

e It requires 2d aditional simulation runs (samples) to compute
Vg(Xk).
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Black-box COvS Problem » Stochastic Approximation

e Let M denote the set of local optimal solutions:

M= {a: €X: g(x) < min g(y)},
yeB(x)

where B(x) C X’ denotes a neighborhood of x € X.
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Black-box COvS Problem » Stochastic Approximation

e Let M denote the set of local optimal solutions:

M= {a:EX: g(x) < min g(y)},

yeB(z)
where B(x) C X’ denotes a neighborhood of x € X.
Local Convergence of SA (Theorem 3 of )

Suppose that
@ g(x) satisfies certain regularity conditions;
® Var(G(zx,¢)) < 02 < o0;

O limy,oocr =0, D o Ak = 00, Y poy Ak < 00, and
Sy aic,;2 < 0.

Then, for KW type SA with symmetric difference gradient
estimator, dist(Xy, M) 2% 0 as k — co.
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Black-box COvS Problem » Stochastic Approximation

o Uunder certain conditions, for * € M such that X =5 x*,
RM type SA can reach O,(k~'/?) rate of convergence, i.e.,

15, — 2|l = Op(k™1/2),

while KW type SA can reach O,(k~'/3) rate of convergence.
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Black-box COvS Problem » Stochastic Approximation

o Uunder certain conditions, for * € M such that X =5 x*,
RM type SA can reach O,(k~'/?) rate of convergence, i.e.,

1Xk — 27| = Op(k~72),
while KW type SA can reach O,(k~'/3) rate of convergence.

e Note that the above order is in terms of the iteration number
k, rather than the number of simulation runs (sample size).
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Black-box COvS Problem » Stochastic Approximation

o Uunder certain conditions, for * € M such that X =5 x*,
RM type SA can reach O,(k~'/?) rate of convergence, i.e.,

1X, — 27| = Op(k~7?),
while KW type SA can reach O,(k~'/3) rate of convergence.

e Note that the above order is in terms of the iteration number
k, rather than the number of simulation runs (sample size).

e If in terms of the sample size n, the rate of convergence of
KW type SA is O,((n/d)~/?), which depends on the
dimensionality d.
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Black-box COvS Problem » Stochastic Approximation

e Simultaneous perturbation stochastic approximation (SPSA):
Vg (Xi) = (g1 (Xp), -, 94 (X)),

where

g 0 G B0~ G = uB)

By = (Bk,lr ... ,Bk'd)T, and Bk,i =1or —1 with
probability 1/2.
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Black-box COvS Problem » Stochastic Approximation

e Simultaneous perturbation stochastic approximation (SPSA):

~

Vg (Xi) = (g1 (Xx), .- 90 (Xp))",
where

g 0 G B0~ G = uB)

By = (Bk,lr ... ,Bk'd)T, and Bk,i =1or —1 with
probability 1/2.

e It requires only 2 aditional simulation runs (samples) to
compute Vg(X}), no matter what d is.
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Black-box COvS Problem » Stochastic Approximation

e Simultaneous perturbation stochastic approximation (SPSA):
Vg (Xi) = (g1 (Xp), -, 94 (X)),

where

g 0 G B0~ G = uB)

By = (Bk,lr ... ,Bk'd)T, and Bk,i =1or —1 with
probability 1/2.

e It requires only 2 aditional simulation runs (samples) to
compute Vg(X}), no matter what d is.

o SPSA can reach O,(n~'/3) rate of convergence in terms of
the sample size n.
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O Black-box DOVS Problem
» Simulated Annealing
» COMPASS
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Black-box DOvVS Problem

e Many black-box DOVS algorithms are based on random
search; see Hong et al. (2015) for a review.
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Black-box DOvVS Problem

e Many black-box DOVS algorithms are based on random
search; see Hong et al. (2015) for a review.

e The framework of random search:
e [nitialization:

o At lteration k:
— Sampling:

— Evaluation:

— Updating:
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Black-box DOvVS Problem

e Many black-box DOVS algorithms are based on random
search; see Hong et al. (2015) for a review.

e The framework of random search:
e Initialization: Arbitrarily choose x; € X’; set the information
set (that keeps visited solutions and their corresponding
observations) Fy; set iteration index k = 0.

o At lteration k:
— Sampling:

— Evaluation:

— Updating:

Spring 2022 (full-time)
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Black-box DOvVS Problem

e Many black-box DOVS algorithms are based on random
search; see Hong et al. (2015) for a review.

e The framework of random search:

e Initialization: Arbitrarily choose x; € X’; set the information
set (that keeps visited solutions and their corresponding
observations) Fy; set iteration index k = 0.

e At lteration k:

— Sampling: Choose the estimation set £ C X (that contains
solutions at which simulation will be run); some or all of the
solutions in £ are randomly sampled from X with distribution
determined by information F.

— Evaluation:

— Updating:
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Black-box DOvVS Problem

e Many black-box DOVS algorithms are based on random
search; see Hong et al. (2015) for a review.

e The framework of random search:

e Initialization: Arbitrarily choose x; € X’; set the information
set (that keeps visited solutions and their corresponding
observations) Fy; set iteration index k = 0.

e At lteration k:

— Sampling: Choose the estimation set £ C X (that contains
solutions at which simulation will be run); some or all of the
solutions in £ are randomly sampled from X with distribution
determined by information F.

— Evaluation: For each « € &, spend simulation effort according
to certain rule determined by Fj, and £.

— Updating:
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Black-box DOvVS Problem

e Many black-box DOVS algorithms are based on random
search; see Hong et al. (2015) for a review.

e The framework of random search:

e Initialization: Arbitrarily choose x; € X’; set the information
set (that keeps visited solutions and their corresponding
observations) Fy; set iteration index k = 0.

e At lteration k:

— Sampling: Choose the estimation set £ C X (that contains
solutions at which simulation will be run); some or all of the
solutions in £ are randomly sampled from X with distribution
determined by information F.

— Evaluation: For each « € &, spend simulation effort according
to certain rule determined by Fj, and £.

— Updating: Update Fi41; choose some @}, as the current
best solution based on certain estimator; set k < k + 1.
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Black-box DOvS Problem » Simulated Annealing

e The simulated annealing algorithm dates back to the
pioneering work by Metropolis et al. (1953)
e It studied how in the physical annealing process, particles of a
solid arrange themselves into thermal equibibrium at a given
temperature.
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Black-box DOvS Problem » Simulated Annealing

e The simulated annealing algorithm dates back to the
pioneering work by Metropolis et al. (1953)
e |t studied how in the physical annealing process, particles of a
solid arrange themselves into thermal equibibrium at a given
temperature.

e A large body of literature has developed the simulated
annealing algorithm to solve deterministic global optimization
problems over finite set; important works include |Kirkpatrick|
et al. (1983)], Mitra et al. (1986)|, Hajek (1988)), etc.
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Black-box DOvS Problem » Simulated Annealing

e The simulated annealing algorithm dates back to the
pioneering work by Metropolis et al. (1953)
e |t studied how in the physical annealing process, particles of a
solid arrange themselves into thermal equibibrium at a given
temperature.

e A large body of literature has developed the simulated
annealing algorithm to solve deterministic global optimization
problems over finite set; important works include |Kirkpatrick|
et al. (1983)], Mitra et al. (1986)|, Hajek (1988)), etc.

e Later, the simulated annealing was extended to solve
black-box DOVS problems over finite set; important works
include Bulgak and Sander (1988)|, Gelfand and Mitter (1989)
Alrefaei and Andradéttir (1999), etc.
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Black-box DOvS Problem » Simulated Annealing

o Let B(x) C X denote a neighborhood! of 2 € X'

TThe neighborhood structer can be quite different in discrete optimization compared to continuous optimization!
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Black-box DOvS Problem » Simulated Annealing

o Let B(x) C X denote a neighborhood! of 2 € X'

e B(x) is carefully desined such that, for any ¢,y € X, y is
reachable from x.
e That is, there exists a finite sequence * = g, ®1,..., Xy =Y
such that ;41 € B(x;), i=0,1,...,¢—1.

TThe neighborhood structer can be quite different in discrete optimization compared to continuous optimization!
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Black-box DOvS Problem » Simulated Annealing

o Let B(x) C X denote a neighborhood! of 2 € X'

e B(x) is carefully desined such that, for any ¢,y € X, y is
reachable from .

e That is, there exists a finite sequence * = g, ®1,..., Xy =Y
such that ;41 € B(x;), i=0,1,...,¢—1.

¢ Define transition probability R(x, y), where
R: X xX —[0,00) and R(z,y) > 0 <=y € B(x).

TThe neighborhood structer can be quite different in discrete optimization compared to continuous optimization!
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Black-box DOvS Problem » Simulated Annealing

o Let B(x) C X denote a neighborhood! of 2 € X'
e B(x) is carefully desined such that, for any ¢,y € X, y is
reachable from x.
e That is, there exists a finite sequence * = g, ®1,..., Xy =Y
such that ;41 € B(x;), i=0,1,...,¢—1.
¢ Define transition probability R(x, y), where
R: X xX —[0,00) and R(z,y) > 0 <=y € B(x).
o Let {tx}r>1 be a positive sequence of numbers, which is

konwn as the temperature.

TThe neighborhood structer can be quite different in discrete optimization compared to continuous optimization!
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Black-box DOvS Problem » Simulated Annealing

e Simulated annealing algorithm for deterministic optimization:
o Initialization:

o At lteration k:
— Sampling:

— Evaluation: No need in the deterministic optimization.

— Updating:
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Black-box DOvS Problem » Simulated Annealing

e Simulated annealing algorithm for deterministic optimization:
o Initialization: Arbitrarily choose Xy € X’; set iteration index

k=0.
o At lteration k:
— Sampling:

— Evaluation: No need in the deterministic optimization.

— Updating:
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Black-box DOvS Problem » Simulated Annealing

e Simulated annealing algorithm for deterministic optimization:
e Initialization: Arbitrarily choose Xy € X'; set iteration index
k=0.
e At lteration k:
— Sampling: Sample a candidate solution Yi 1 € B(Xy)
according to distribution R(Xj,-), i.e.,

P(Yit+1 = y| Xk = ) = R(z, y).

— Evaluation: No need in the deterministic optimization.

— Updating:
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Black-box DOvS Problem » Simulated Annealing

e Simulated annealing algorithm for deterministic optimization:
e Initialization: Arbitrarily choose Xy € X'; set iteration index
k=0.
e At lteration k:

— Sampling: Sample a candidate solution Yi 1 € B(Xy)
according to distribution R(Xj,-), i.e.,

P(Yit+1 = y| Xk = ) = R(z, y).

— Evaluation: No need in the deterministic optimization.

— Updating: Let

_[Q(Yk+1)_9(xk)]+}

Yi+1, with probability exp{ -

Xiy1 = { )
Xk, otherwise;

set k< k+ 1.
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Black-box DOvS Problem » Simulated Annealing

e To ensuer the simulated annealing algorithm for deterministic
optimization is globally convergent, i.e.,

dist(X, S) 2% 0, as k — oo,

Hajek (1988, Theorem 1)| gives a sufficient condition.
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Black-box DOvS Problem » Simulated Annealing

e To ensuer the simulated annealing algorithm for deterministic
optimization is globally convergent, i.e.,

dist(X, S) 2% 0, as k — oo,

Hajek (1988, Theorem 1)| gives a sufficient condition.

@ R(x,y) satisfies weak reversibility; a sufficient example is that

0, otherwise,

R(z,y) = {

with symmetric neighborhood, i.e., y € B(x) < = € B(y).
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Black-box DOvS Problem » Simulated Annealing

e To ensuer the simulated annealing algorithm for deterministic
optimization is globally convergent, i.e.,

dist(X, S) 2% 0, as k — oo,

Hajek (1988, Theorem 1)| gives a sufficient condition.

@ R(x,y) satisfies weak reversibility; a sufficient example is that

1 .
R(z,y) = {m ity € B),
0, otherwise,
with symmetric neighborhood, i.e., y € B(x) < = € B(y).
® {t)}r>1 takes the form
c

=
P Ik + 1)
where ¢ is sufficiently large.f

Tc > d*, where d* is the maximum depth |(Hajek (1988, p313)| of the local but not global optimal solutions.
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Black-box DOvS Problem » Simulated Annealing

e Simulated annealing algorithm for black-box DOvS
and Mitter 1989)]:
e Initialization: Arbitrarily choose Xy € X'; set iteration index
k=0.
e At Iteration k:

— Sampling: Sample a candidate solution Yi41 € B(Xk)
according to distribution R(Xy,-), i.e.,

P(Yii1 = y| Xk =) = R(z, y).

— Evaluation: Let §(Yiy1) = —— S G(Yii1, &),

N1 =1=1

(X)) = =S G( Xk, &)

Ng+41

— Updating: Let

—[§(Yk+1)—§(xk)]+}

Yi+1, with probability exp{ e

Xpt1 = { .
X, otherwise;

set k< k+ 1.

T& in G(Yi41,&) and & in G(Xk, &) denote different randomness; written in this way just for notation simplity.
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Black-box DOvS Problem » Simulated Annealing

¢ Gelfand and Mitter (1989)| show that if

G(Yis1)|Yes1 =y ~ N(9(y), 07 11),

such that o = o(ty), then the simulated annealing algorithm
used for DOVS has the same global convergence as its
counterpart used for deterministic optimization.
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Black-box DOvS Problem » Simulated Annealing

¢ Gelfand and Mitter (1989)| show that if

G(Yis1)|Yes1 =y ~ N(9(y), 07 11),

such that o = o(ty), then the simulated annealing algorithm
used for DOVS has the same global convergence as its
counterpart used for deterministic optimization.

¢ A sufficient condition is that:
o G(z, &) ~ N(g(z),o%(x)) with o?(x) < 02 < o for all

xr e X.
o {ny}r>1 satisfies limy_ o0 #ﬁ =0, i.e, ng = t;* with
a > 2.
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Black-box DOvS Problem » Simulated Annealing

¢ Gelfand and Mitter (1989)| show that if

G(Yis1)|Yes1 =y ~ N(9(y), 07 11),

such that o = o(ty), then the simulated annealing algorithm
used for DOVS has the same global convergence as its
counterpart used for deterministic optimization.

¢ A sufficient condition is that:
o G(z, &) ~ N(g(z),o%(x)) with o?(x) < 02 < o for all

xr e X.
o {ny}r>1 satisfies limy_ o0 #ﬁ =0, i.e, ng = t;* with
a > 2.

e |Alrefaei and Andradéttir (1999) propose a modified simulated
annealing algorithm for DOVS, which is also globally
convergent:

* temperature ¢ is constant;
e the current best solution is chosed in a different way.
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Black-box DOvVS Problem » COMPASS

e Convergent Optimization via Most-Promising-Area Stochastic
Search (COMPASS) is a locally convergent algorithm for
black-box algorithm proposed by Hong and Nelson (2006).
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Black-box DOvVS Problem » COMPASS

e Convergent Optimization via Most-Promising-Area Stochastic
Search (COMPASS) is a locally convergent algorithm for
black-box algorithm proposed by Hong and Nelson (2006).

e It can be used when the discrete feasible set is finite (i.e., fully
constrained) or infinite (i.e., partially constrained or
unconstrained).
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Black-box DOvVS Problem » COMPASS

e COMPASS for DOVS Hong and Nelson (2006):

o [nitialization:

e At lteration k:
— Sampling:

— Evaluation:

— Updating:

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 10 Spring 2022 (full-time)


https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://doi.org/10.1287/opre.1050.0237
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Black-box DOvVS Problem » COMPASS

e COMPASS for DOVS Hong and Nelson (2006):
e Initialization: Arbitrarily choose g € X; set o, = o and
Vo = {x0}; take observations according to a simulation
allocation rule (SAR) from xg; let Py = X; set iteration index

k=0.
o At lteration k:
— Sampling:
— Evaluation:
— Updating:
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Black-box DOvVS Problem » COMPASS

e COMPASS for DOVS Hong and Nelson (2006):
e Initialization: Arbitrarily choose g € X; set o, = o and
Vo = {zo}; take observations according to a simulation
allocation rule (SAR) from xg; let Py = X; set iteration index
k=0.
e At lteration k:
— Sampling: Sample m solutions uniformly and independently

from Py, denoted as {xk1,..., Trm}; let

Vg1 = Ve U{@k1, ..., Trm} be the estimation set.
— Evaluation:
— Updating:
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Black-box DOvVS Problem » COMPASS

e COMPASS for DOVS Hong and Nelson (2006):
e Initialization: Arbitrarily choose g € X; set o, = o and
Vo = {zo}; take observations according to a simulation
allocation rule (SAR) from xg; let Py = X; set iteration index
k=0.
e At lteration k:
— Sampling: Sample m solutions uniformly and independently
from Py, denoted as {xk1, ..., Tem}; let
Vit1 == Ve U{@k1,..., Txm | be the estimation set.

— Evaluation: For each @ € Vj41, take additional observations
according to the SAR.

— Updating:
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Black-box DOvVS Problem » COMPASS

e COMPASS for DOVS Hong and Nelson (2006):
e Initialization: Arbitrarily choose g € X; set o, = o and
Vo = {x0}; take observations according to a simulation
allocation rule (SAR) from xg; let Py = X; set iteration index
k=0.
o At lteration k:
— Sampling: Sample m solutions uniformly and independently
from Py, denoted as {xk1,..., Trm}; let
Vg1 = Ve U{@k1, ..., Trm} be the estimation set.

— Evaluation: For each @ € Vj41, take additional observations
according to the SAR.

— Updating: Update Pi+1; choose the solution in Vi1 with
smallest estimated funtion value as xj , ; set k + k + 1.
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Black-box DOvVS Problem » COMPASS

e The way to construct Pj, — the most promising area:
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© Usage in Softwares
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Usage in Softwares

e In many commercial simulation softwares, like Arena,
AnyLogic, Simio and FlexSim, OptQuest is integrated for
simulation optimization.
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Usage in Softwares

e In many commercial simulation softwares, like Arena,
AnyLogic, Simio and FlexSim, OptQuest is integrated for
simulation optimization.

e OptQuest is based on a combination of methods, including
linear/integer programming, heuristics and metaheuristics.
o |t is robust when used to solve practical OvS problems;
e but it has no provable convergence for OvS problems.
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Usage in Softwares

e In many commercial simulation softwares, like Arena,
AnyLogic, Simio and FlexSim, OptQuest is integrated for
simulation optimization.

e OptQuest is based on a combination of methods, including
linear/integer programming, heuristics and metaheuristics.

o |t is robust when used to solve practical OvS problems;
e but it has no provable convergence for OvS problems.

e None of those OvS algirhtms have been integrated into the
commercial simulation softwares yet.
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Usage in Softwares

e In many commercial simulation softwares, like Arena,
AnyLogic, Simio and FlexSim, OptQuest is integrated for
simulation optimization.

e OptQuest is based on a combination of methods, including
linear/integer programming, heuristics and metaheuristics.

o |t is robust when used to solve practical OvS problems;
e but it has no provable convergence for OvS problems.

e None of those OvS algirhtms have been integrated into the
commercial simulation softwares yet.

e So, for reaseachers in the field of OvS, there is still a long way
to go...
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